Abstract
Nanosensors are chemical or mechanical sensors used in food and water quality detection to detect the presence of chemical species. Biosensor enabled packaging systems can detect food quality and extend shelf life. Nanosensors provide faster and more accurate detection of microbes, toxins, and adulterants. Nanoparticles may also be used to detect biodegradable food components such as vitamins and antioxidants. The review focuses on the emerging application of nanotechnology based sensors for shelf life analysis of food products, including freshness monitoring, food safety measurement, and detection of spoiled food components. The focused categories of nanomaterials for developing sensors in food applications are inorganic, organic, and carbon allotropes. In this context, the characteristics features of inorganic nanomaterials, organic nanomaterials, and carbon allotropes for developing nanotechnology-based sensors have been discussed. Further, a detailed discussion on the use of inorganic nanomaterials such as gold, silver, titanium dioxide, and zinc oxide nanoparticles for developing sensors in determining food shelf life (freshness, spoilage, and food safety) has been made. Due to available significant properties, including biocompatibility, nontoxicity, photochemical activity, large surface area, and electronic properties, the inorganic nanomaterials are a promising candidate for developing sensors to be used in food sectors. Besides, the inclusion of organic or biopolymeric nanomaterials and carbon allotropes for developing sensors for food shelf life has also been discussed. This study revealed that nanosensors have a substantial role in the food industry as identification and detection tool.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.