Abstract
Excessive bitterness, pastiness, and adhesiveness are the main organoleptic and textural defects of dry-cured ham, which often cause a lot of financial losses to manufacturers and seriously damage the quality of the product. These sensory and textural defects are related to the protein degradation of dry-cured ham. Proteomics shows great potential to improve our understanding of the molecular mechanism of sensory and textural defects and identify biomarkers for monitoring their quality traits. This review presents some of the major achievements and considerations in organoleptic and textural defects of dry-cured ham by proteomics analysis in the recent decades and gives an overview about how to correct sensory and textural defects of dry-cured ham. Proteomics reveals that muscle proteins derived from myofibril and cytoskeleton and involved in metabolic enzymes and oxygen transport have been identified as potential biomarkers in defective dry-cured ham. Relatively high residual activities of cathepsin B and L are responsible for the excessive degradation of these protein biomarkers in defective dry-cured ham. Ultrasound-assisted mild thermal or high-pressure treatment shows a good correction for the organoleptic and textural defects of dry-cured ham by changing microstructure and conformation of muscle proteins by accelerating degradation of proteins and polypeptides into free amino acids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Comprehensive Reviews in Food Science and Food Safety
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.