Abstract

A matrix-integrated single-stage isolated MF/HF AC-AC/DC-AC/AC-DC converter topology stands out as an innovative concept, offering a multitude of advantages including minimal output current THDs, near UPF, 4Q operation, smooth BPF capability, and increased power density leading to the converter’s enhanced efficiency, cost-effectiveness, and reliability. These characteristics render it an exemplary choice for RE-based power conversion applications. In fact, the matrix-integrated single-stage isolated MF/HF converters have witnessed an increased adoption of RE-based grid interconnection in recent years, specifically within solar PV, WECS, grid-tied offshore WF, and FC-based applications. RE sources produce variable and intermittent AC power by nature, further necessitating conversion to a stable and grid-compatible AC voltage and frequency. This is where MCs offer distinct advantages when contrasted with the conventional indirect dual-stage VSC-based rectifier–inverter topology. In this paper, a total of 22 matrix-integrated HF isolated converter topologies are broadly explored. Our study provides a comprehensive analysis and classification of matrix-integrated isolated single-stage MF/HF AC-AC converters, DC-AC inverters, and AC-DC rectifier topologies including modified topology architectures, control method, modulation techniques along with significant applications. Within this scope, the matrix-integrated converter topologies are categorized based on their architectures and other relevant subvariants. Our primary objective of this study is to impart a clear understanding of the overarching framework and principles of the matrix-integrated single-stage isolated MF/HF converter topologies and stimulate the creation of new topologies that cater to specific requirements for grid-interconnected systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call