Abstract

Carbon based 2D materials, specifically those of the graphene family, recently gained considerable interest in the study of sensors. It is emerging as a novel and potent material with tunable physicochemical properties such as ballistic conduction, high mechanical strength, a broad spectrum of chemical stability, high surface-area-to-volume ratio, ease of surface functionalization, and the possibility of mass production. This review provides insights into recent advances in graphene-based materials for field-effect transistor-based sensors, electrochemical sensors, and Raman spectroscopy-based sensors. Among the sensing methodologies, those utilizing field-effect transistors demonstrate a high degree of specificity and ultralow sensitivity and are relatively easy to manufacture in large batches with a repeatable sensitivity. Over the last decade, multiple types of sensors based on various graphene-family materials have been researched to detect various types of targets, ranging from biomolecules to heavy metals and chemical pollutants. Owing to their ability to integrate into a portable and rapid test platform, both at the laboratory scale and for point-of-care testing, the graphene family of materials (GFM) is a significantly viable base for sensor fabrication. Electrochemical and Raman spectroscopy-based sensors can provide a robust platform for detection at high-stress environments including fluctuating pH, temperature, and other possible disturbing conditions. The strategies used by researchers to detect specific and ultralow concentrations of analytes in a diverse mixture of targets are elaborated in detail. This review chronologically presents details regarding the GFM ranging from their synthesis to specific application possibilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.