Abstract
Thermoelectric (TE) technology is regarded as alternative and environmentally friendly technology for harvesting and recovering heat which is directly converted into electrical energy using thermoelectric generators (TEG). Conversely, Peltier coolers and heaters are utilised to convert electrical energy into heat energy for cooling and heating purposes The main challenge lying behind the TE technology is the low efficiency of these devices mainly due to low figure of merit (ZT) of the materials used in making them. The objective of this work is to carry out a comprehensive review of TE technology encompassing the materials, applications, modelling techniques and performance improvement. The paper has covered a wide range of topics related to TE technology subject area including the output power conditioning techniques. It is observed that the intensified research into TE technology has led to an outstanding increase in ZT, rendering the use TE devices in diversified application a reality. The performance improvements of TE devices have been mainly contributed by improved TE material research, TE device geometrical adjustments, design of integrated TE devices as well as the use of advanced TE mathematical models which have facilitated appropriate segmentation of TE modules using different materials. TE devices are observed to have booming applications in cooling, heating, electric power generation as well as hybrid applications. With the generation of electrical energy using TEG, not only does the waste heat provide heat source but also other energy sources like solar, geothermal, biomass, infra-red radiation have gained increased utilization in TE based systems. However, the main challenge remains in striking the balance between the conflicting parameters; ZT and power factor, when designing and optimizing advanced TE materials. Hence more research is necessary to overcome this and other challenge so that the performance TE device can be improved further.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.