Abstract
Malaria remains a severe global health concern, with 249 million cases reported in 2022, according to the World Health Organization (WHO) [1]. PfDHODH is an essential enzyme in malaria parasites that helps to synthesize certain building blocks for their growth and development. It has been confirmed that targeting Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) enzyme could lead to new and effective antimalarial drugs. Inhibitors of PfDHODH have shown potential for slowing down parasite growth during both the blood and liver stages. Over the last two decades, many species selective PfDHODH inhibitors have been designed, including DSM compounds and other non-DSM compounds. In the first chapter [2] of this review, we have reviewed all synthetic schemes and structure–activity relationship (SAR) studies of DSM compounds. In this second chapter, we have compiled all the other non-DSM PfDHODH inhibitors based on dihydrothiophenones, thiazoles, hydroxyazoles, and N-alkyl-thiophene-2-carboxamides. The review not only offers an insightful overview of the synthetic methods employed but also explores into alternative routes and innovative strategies involving different catalysts and chemical reagents. A critical aspect covered in the review is the SAR studies, which provide a comprehensive understanding of how structural modifications impact the efficacy of PfDHODH inhibitors and challenges related to the discovery of PfDHODH inhibitors. This information is invaluable for scientists engaged in the development of new antimalarial drugs, offering insights into the most promising scaffolds and their synthetic techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.