Abstract
The advent of three-dimensional (3D) printing technology has revolutionized the production of customized titanium (Ti) alloy implants. The success rate of implantation and the long-term functionality of these implants depend not only on design and material selection but also on their surface properties. Surface modification techniques play a pivotal role in improving the biocompatibility, osseointegration, and overall performance of 3D-printed Ti alloy implants. Hence, the primary objective of this review is to comprehensively elucidate various strategies employed for surface modification to enhance the performance of 3D-printed Ti alloy implants. This review encompasses both conventional and advanced surface modification techniques, which include physical–mechanical methods, chemical modification methods, bioconvergence modification technology, and the functional composite method. Furthermore, it explores the distinct advantages and limitations associated with each of these methods. In the future, efforts in surface modification will be geared towards achieving precise control over implant surface morphology, enhancing osteogenic capabilities, and augmenting antimicrobial functionality. This will enable the development of surfaces with multifunctional properties and personalized designs. By continuously exploring and developing innovative surface modification techniques, we anticipate that implant performance can be further elevated, paving the way for groundbreaking advancements in the field of biomedical engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.