Abstract

The paper reviews the theory of strain localization for elastoplastic soils and relates it to past works on the inclination of shear bands. It outlines and discusses the main theoretical assumptions, describes the localized velocity field, compiles experimental results and compares them to theoretical predictions on shear band orientations. It studies the effect of elastic unloading and examines systematically the influences of friction angle, dilatancy angle, Poisson's ratio and hardening modulus on shear bands. After comparing the predictions of the Mohr-Coulomb and Drucker-Prager models, the study concludes that the application of the strain localization theory to elastoplasticity does not account for the observed shear band orientations in all circumstances. It also recalls that the strain localization theory provides a necessary, but not sufficient, condition for the emergence of shear bands, a theoretical feature which enhances the disagreement between the experimental observations and theoretical predictions on shear band inclinations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call