Abstract
Human action recognition is an important field in computer vision that has attracted remarkable attention from researchers. This survey aims to provide a comprehensive overview of recent human action recognition approaches based on deep learning using RGB video data. Our work divides recent deep learning-based methods into five different categories to provide a comprehensive overview for researchers who are interested in this field of computer vision. Moreover, a pure-transformer architecture (convolution-free) has outperformed its convolutional counterparts in many fields of computer vision recently. Our work also provides recent convolution-free-based methods which replaced convolution networks with the transformer networks that achieved state-of-the-art results on many human action recognition datasets. Firstly, we discuss proposed methods based on a 2D convolutional neural network. Then, methods based on a recurrent neural network which is used to capture motion information are discussed. 3D convolutional neural network-based methods are used in many recent approaches to capture both spatial and temporal information in videos. However, with long action videos, multistream approaches with different streams to encode different features are reviewed. We also compare the performance of recently proposed methods on four popular benchmark datasets. We review 26 benchmark datasets for human action recognition. Some potential research directions are discussed to conclude this survey.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.