Abstract

The “Learning from nature” strategy is currently going through a renaissance period in modern materials science. Valuable experience gained by observing existing natural materials—minerals—paves the way towards design and modification of prospective functional materials for energy storage, which typically inherit the peculiarities of the parental minerals. The faults and flaws of the crystal structure—its defects—play a crucial role in determining both mechanical and electrochemical properties of the electrode materials. In this review, we endeavored to rethink the defect chemistry in triphylite-type positive electrode materials for metal-ion batteries and reflected on it from the perspective of their mineral olivine counterparts, thus establishing important correlations between point defects in olivine minerals and related electrode materials, their origin and formation processes. This work is meant to review geoscience and materials science perceptions of defects in triphylite-type electrode materials for Li- and Na-ion batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.