Abstract

Prediction of well production from unconventional reservoirs is a complex problem given an incomplete understanding of physics despite large amounts of data. Recently, Data Analytics Techniques (DAT) have emerged as an effective approach for production forecasting for unconventional reservoirs. In some of these approaches, DAT are combined with physics-based models to capture the essential physical mechanisms of fluid flow in porous media, while leveraging the power of data-driven methods to account for uncertainties and heterogeneities. Here, we provide an overview of the applications and performance of DAT for production forecasting of unconventional reservoirs examining and comparing predictive models using different algorithms, validation benchmarks, input data, number of wells, and formation types. We also discuss the strengths and limitations of each model, as well as the challenges and opportunities for future research in this field. Our analysis shows that machine learning (ML) based models can achieve satisfactory performance in forecasting production from unconventional reservoirs. We measure the performance of the models using two dimensionless metrics: mean absolute percentage error (MAPE) and coefficient of determination (R2). The predicted and actual production data show a high degree of agreement, as most of the models have a low error rate and a strong correlation. Specifically, ~ 65% of the models have MAPE less than 20%, and more than 80% of the models have R2 higher than 0.6. Therefore, we expect that DAT can improve the reliability and robustness of production forecasting for unconventional resources. However, we also identify some areas for future improvement, such as developing new ML algorithms, combining DAT with physics-based models, and establishing multi-perspective approaches for comparing model performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.