Abstract

With the development of Computer-aided Diagnosis (CAD) and image scanning techniques, Whole-slide Image (WSI) scanners are widely used in the field of pathological diagnosis. Therefore, WSI analysis has become the key to modern digital histopathology. Since 2004, WSI has been used widely in CAD. Since machine vision methods are usually based on semi-automatic or fully automatic computer algorithms, they are highly efficient and labor-saving. The combination of WSI and CAD technologies for segmentation, classification, and detection helps histopathologists to obtain more stable and quantitative results with minimum labor costs and improved diagnosis objectivity. This paper reviews the methods of WSI analysis based on machine learning. Firstly, the development status of WSI and CAD methods are introduced. Secondly, we discuss publicly available WSI datasets and evaluation metrics for segmentation, classification, and detection tasks. Then, the latest development of machine learning techniques in WSI segmentation, classification, and detection are reviewed. Finally, the existing methods are studied, and the application prospects of the methods in this field are forecasted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.