Abstract

Users are now able to actively interact with images and pose different questions based on images, thanks to recent developments in artificial intelligence. In turn, a response in a natural language answer is expected. The study discusses a variety of datasets that can be used to examine applications for visual question-answering (VQA), as well as their advantages and disadvantages. Four different forms of VQA models—simple joint embedding-based models, attention-based models, knowledge-incorporated models, and domain-specific VQA models—are in-depth examined in this article. We also critically assess the drawbacks and future possibilities of all current state-of-the-art (SoTa), end-to-end VQA models. Finally, we present the directions and guidelines for further development of the VQA models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.