Abstract
Recent research has discovered that leveraging ontology is an effective way to facilitate semantic video concept detection. As an explicit knowledge representation, a formal ontology definition usually consists of a lexicon, properties, and relations. In this paper, we present a comprehensive representation scheme for video semantic ontology in which all the three components are well studied. Specifically, we leverage LSCOM to construct the concept lexicon, describe concept property as the weights of different modalities which are obtained manually or by data-driven approach, and model two types of concept relations (i.e., pairwise correlation and hierarchical relation). In contrast with most existing ontologies which are only focused on one or two components for domain-specific videos, the proposed ontology is more comprehensive and general. To validate the effectiveness of this ontology, we further apply it to video concept detection. The experiments on TRECVID 2005 corpus have demonstrated a superior performance compared to existing key approaches to video concept detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.