Abstract

The component’s failure in network-on-chips (NoCs) has been a critical factor on the system’s reliability. In order to alleviate the impact of faults, fault tolerance has been investigated in the recent years to enhance NoC’s robustness. Due to the vast selection of fault-tolerance mechanisms and critical design constraints, selecting and configuring an appropriate mechanism to satisfy the fault-tolerance requirements constitute new challenges for designers. Consequently, reliability assessment has become prominent for the early stages of manufacturing process to solve these problems. This paper approaches the fault-tolerance analysis by providing an analytical model to approximate the lifetime reliability and compares it with a system-level simulation. Based on the proposed approach, we measure the fault-tolerance efficiency using a new parameter, named reliability acceleration factor. The goal of this paper is to provide an efficient and accurate reliability assessment to help designers easily understand and evaluate the advantages and drawbacks of their potential fault-tolerance methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call