Abstract
This study paves the way for the creation of innovative therapeutic strategies, aimed at subverting resistance to immune checkpoint blockade (ICB) therapies in metastatic melanoma patients. By unraveling the specific molecular mechanisms underlying resistance, scientists can design effective alternative treatments that target pathways such as pathways associated with cell cycle dysregulation and c-MYC signaling. Furthermore, through the application of advanced immune monitoring techniques such as NanoString Digital Spatial Profiling (DSP) and Cyclic Immunofluorescence (CyCIF), this study has significantly enriched our understanding of the tumor microenvironment. This enhanced characterization facilitates the discovery of potential biomarkers that may forecast a patient's response to ICB treatment. Ultimately, these advancements could potentially refine patient outcomes and foster the development of more personalized cancer treatments in the future.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.