Abstract

A theoretical foundation for two widely used statistical representations of multiphase flows, namely the Eulerian–Eulerian (EE) and Lagrangian–Eulerian (LE) representations, is established in the framework of the probability density function (p.d.f.) formalism. Consistency relationships between fundamental statistical quantities in the EE and LE representations are rigorously established. It is shown that fundamental quantities in the two statistical representations bear an exact relationship to each other only under conditions of spatial homogeneity. Transport equations for the probability densities in each statistical representation are derived. Exact governing equations for the mean mass, mean momentum and second moment of velocity corresponding to the two statistical representations are derived from these transport equations. In particular, for the EE representation, the p.d.f. formalism is shown to naturally lead to the widely used ensemble-averaged equations for two-phase flows. Galilean-invariant combinations of unclosed terms in the governing equations that need to be modelled are clearly identified. The correspondence between unclosed terms in each statistical representation is established. Hybrid EE–LE computations can benefit from this correspondence, which serves in consistently transferring information from one representation to the other. Advantages and limitations of each statistical representation are identified. The results of this work can also serve as a guiding framework for direct numerical simulations of two-phase flows, which can now be exploited to precisely quantify unclosed terms in the governing equations in the two statistical representations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.