Abstract

High level quantum mechanical computations and extensive stochastic searches of the potential energy surfaces of the Alanine dimers uncover rich and complex structural and interaction landscapes. A total of 416 strongly bound (up 13.4 kcal mol-1 binding energies at the DLPNO-CCSD(T)/6-311++G(d,p) level corrected by the basis set superposition error and by the zero point vibrational energies over B3LYP-D3 geometries), close energy equilibrium structures were located, bonded via 32 specific types of intermolecular contacts including Y⋅⋅⋅H-X primary and Y⋅⋅⋅H-C secondary hydrogen bonds, H⋅⋅⋅H dihydrogen contacts, and non conventional anti-electrostatic Y X interactions. The putative global minimum is triply degenerate, corresponding to the structure of the common dimer of a carboxylic acid. All quantum descriptors of chemical bonding point to a multitude of weak individual interactions within each dimer, whose cumulative effect results in large binding energies and in an attractive fluxional wall of non-covalent interactions in the interstitial region between the monomers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call