Abstract

The heating of a solar cell has significant adverse consequences on both its efficiency and its reliability. Here to fully exploit the cooling potential of solar cells, we experimentally characterized the thermal radiation and solar absorption properties of current silicon solar cells and, on the basis of such experimental characterization, propose a comprehensive photonic approach by simultaneously performing radiative cooling while also selectively utilizing sunlight. In particular, we design a photonic cooler made of one-dimensional photonic films that can strongly radiate heat through its thermal emission while also significantly reflecting the solar spectrum in the sub-band-gap and ultraviolet regimes. We show that applying this photonic cooler to a solar panel can lower the cell temperature by over 5.7 °C. We also show that this photonic cooler can be used in a concentrated photovoltaic system to significantly reduce the solar cell temperature or required cooling power. This photonic cooler can be r...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.