Abstract

In this paper, the photocatalytic effect of zirconia/laser-induced graphene on the degradation of methylene blue was comprehensively studied. The average particle size measured by HRTEM is 6 nm for both ZrO2 and ZrO2/G10 samples, which explains the high-quality TEM imaging of isolated squared sections of cubic particles. The weight percentages of Zr, O, and C elements using EDX were 72.16, 18.56, and 9.28, respectively. These results confirm the formation of binary composites. Moreover, Raman scattering exhibited that the spectrum of pure ZrO2 was difficult to be detected due to the high luminescence. However, ZrO2 vibration modes were detected for ZrO2-graphene nanocomposites at 1012, 615, 246, and 150 cm−1. A shift of the D- and G-bands of graphene were observed, where D-peak and G-peak were observed at 1370 and 1575 cm−1 for ZrO2/5G and, 1361 and 1565 cm−1 for ZrO2/10G, respectively. The shift is ascribed to the incorporation of graphene into the surface of the oxide material. Compared to ZrO2, the newly fabricated ZrO2-graphene nanocomposites have the advantage of increased photocatalytic effects. An adsorbent concentration of 5 and 10 mg·L−1 at room temperature over 240 min was observed to be suitable experimental conditions. The kinetic results indicate that the practical results obtained are well expressed by the first-order kinetic model at different concentrations. In addition, the results showed that the addition of graphene led to a significant degradation process increase. The results also showed the significant effect of the investigated ZrO2-graphene nanocomposites on the decomposition of methylene blue cation. The decomposition of cationic pollutants showed a synergistic effect of the ZrO2-graphene nanocomposites on wastewater treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call