Abstract

Bifacial photovoltaic (PV) modules, capable of capturing solar energy from both sides of the cells, are becoming increasingly popular as their manufacturing costs approach those of traditional monofacial modules. Accurate estimation of their power generation capacity is essential for optimizing their use. This study evaluates a power production model for bifacial PV modules using local irradiance data from Razon+ in Sherbrooke, Canada, and Solcast irradiance data derived from satellite imagery and weather models. The model's performance was assessed throughout the year, with particular attention to the impact of snow coverage during winter. To address computational efficiency, the study evaluated ray tracing and a 2D view factor model, selecting the more time-efficient method. Experimental validation showed that, using local irradiance data, the model achieved Normalized Root Mean Square Errors (NRMSE) of 18.77%, 4.94%, 3.93%, and 6.22% for winter, spring, summer, and fall, respectively. With Solcast data, the NRMSEs were 22.76%, 15.32%, 14.72%, and 17.78% for the corresponding seasons. While the model performed satisfactorily in spring, summer, and fall, it was less accurate in winter. To enhance winter accuracy, the model incorporated snow coverage, using snow depth as a metric to detect snow on the front surface. This adjustment improved the accuracy by 51.1%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.