Abstract

A two-dimensional numerical heat transfer model is used to investigate an active magnetic regenerator (AMR) based on parallel plates of magnetocaloric material. A large range of parameter variations are performed to study the optimal AMR. The parameters varied are the plate and channel thicknesses, cycle frequency and fluid movement. These are cast into the non-dimensional units utilization, porosity and number of transfer units (NTU). The cooling capacity vs. temperature span is mapped as a function of these parameters and each configuration is evaluated through the maximum temperature span and exergy. The results show that the optimal AMR should have a utilization in the range 0.2–1 and an NTU higher than 10 and not necessarily more than 30. It is concluded that parallel plate-based regenerators face significant challenges in terms of manufacturability. However, the benefit of parallel plate regenerators is a very low pressure drop, which is needed for high performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call