Abstract

Prostate epithelial cells from both normal and cancer tissues, grown in three-dimensional (3D) culture as spheroids, represent promising in vitro models for the study of normal and cancer-relevant patterns of epithelial differentiation. We have developed the most comprehensive panel of miniaturized prostate cell culture models in 3D to date (n = 29), including many non-transformed and most currently available classic prostate cancer (PrCa) cell lines. The purpose of this study was to analyze morphogenetic properties of PrCa models in 3D, to compare phenotypes, gene expression and metabolism between 2D and 3D cultures, and to evaluate their relevance for pre-clinical drug discovery, disease modeling and basic research. Primary and non-transformed prostate epithelial cells, but also several PrCa lines, formed well-differentiated round spheroids. These showed strong cell-cell contacts, epithelial polarization, a hollow lumen and were covered by a complete basal lamina (BL). Most PrCa lines, however, formed large, poorly differentiated spheroids, or aggressively invading structures. In PC-3 and PC-3M cells, well-differentiated spheroids formed, which were then spontaneously transformed into highly invasive cells. These cell lines may have previously undergone an epithelial-to-mesenchymal transition (EMT), which is temporarily suppressed in favor of epithelial maturation by signals from the extracellular matrix (ECM). The induction of lipid and steroid metabolism, epigenetic reprogramming, and ECM remodeling represents a general adaptation to 3D culture, regardless of transformation and phenotype. In contrast, PI3-Kinase, AKT, STAT/interferon and integrin signaling pathways were particularly activated in invasive cells. Specific small molecule inhibitors targeted against PI3-Kinase blocked invasive cell growth more effectively in 3D than in 2D monolayer culture, or the growth of normal cells. Our panel of cell models, spanning a wide spectrum of phenotypic plasticity, supports the investigation of different modes of cell migration and tumor morphologies, and will be useful for predictive testing of anti-cancer and anti-metastatic compounds.

Highlights

  • Two-dimensional (2D) monolayer cell cultures represent highly reductionist models of epithelial cells and epithelial cancers, due to the loss of physiological extracellular matrix (ECM) on artificial plastic surfaces, and high serum concentrations

  • In monolayer culture of prostate cancer (PrCa) lines, the homeostasis of undifferentiated tumor stem cells through basal, transit-amplifying and terminally differentiated, hormone-sensitive luminal cells depends on cell culture conditions, calcium and serum concentration [1,2], and only poorly represents tumor cell biology in vivo

  • The lack of a relevant basal lamina (BL), defective ECM deposition, and missing stromal or myoepithelial components [3] further contribute to the artificial nature

Read more

Summary

Introduction

Two-dimensional (2D) monolayer cell cultures represent highly reductionist models of epithelial cells and epithelial cancers, due to the loss of physiological extracellular matrix (ECM) on artificial plastic surfaces, and high serum concentrations. The most effective small molecule inhibitors in monolayer cultures are chemotherapeutic drugs that target proliferation and mitosis. This imbalance contributes to the poor predictive value of compound efficacies between in vitro and in vivo experiments. Drug action that relates to cell-cell interaction, maturation, epithelial to mesenchymal transition (EMT) and cancer stem cells (CSC) is likely to go undetected. Both 3D architecture and the ECM exert strong effects on drug efficacy [4]. Glandular epithelial cancer cells rapidly adapt to different microenvironments and can dynamically switch between alternative pathways that regulate proliferation, differentiation and survival

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call