Abstract
Petroleum facilities containing welded steel bulk flammable liquid product storage tanks possess sundry fire hazards inherent to the facility. These installations urgently require indigenous efficient firefighting systems. So, the efficient design of firewater and firefighting foam system is dynamic in controlling fire-related emergencies. The paper deals with the in-depth conceptualization of the design and analysis of firefighting systems for a typical petroleum handling, processing and storage facility in compliance with international standards. The study is aimed to formulate the elementary technique for designing an optimized firefighting system. The proposed objective was achieved by considering an ideal tank farm site that is most commonly located in a range of terminal stations, pumping stations, petroleum refineries, well sites, etc. Sufficient illumination was enumerated on the standardized classification of the liquid fuel product with respect their flammability range. Special guidelines regarding firefighting system design basis were defined and an optimized firefighting and foam system design was developed. Moreover, sufficient limitations that must be considered during the firefighting of huge tank fires are discussed. This comprehensive numerical design philosophy offers a simple and wide-ranging guide to industrial practitioners by formulating the principles for industrial firefighting system design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.