Abstract

BackgroundNumerous genetic and genomic datasets related to complex diseases have been made available during the last decade. It is now a great challenge to assess such heterogeneous datasets to prioritize disease genes and perform follow up functional analysis and validation. Among complex disease studies, psychiatric disorders such as major depressive disorder (MDD) are especially in need of robust integrative analysis because these diseases are more complex than others, with weak genetic factors at various levels, including genetic markers, transcription (gene expression), epigenetics (methylation), protein, pathways and networks.ResultsIn this study, we proposed a comprehensive analysis framework at the systems level and demonstrated it in MDD using a set of candidate genes that have recently been prioritized based on multiple lines of evidence including association, linkage, gene expression (both human and animal studies), regulatory pathway, and literature search. In the network analysis, we explored the topological characteristics of these genes in the context of the human interactome and compared them with two other complex diseases. The network topological features indicated that MDD is similar to schizophrenia compared to cancer. In the functional analysis, we performed the gene set enrichment analysis for both Gene Ontology categories and canonical pathways. Moreover, we proposed a unique pathway crosstalk approach to examine the dynamic interactions among biological pathways. Our pathway enrichment and crosstalk analyses revealed two unique pathway interaction modules that were significantly enriched with MDD genes. These two modules are neuro-transmission and immune system related, supporting the neuropathology hypothesis of MDD. Finally, we constructed a MDD-specific subnetwork, which recruited novel candidate genes with association signals from a major MDD GWAS dataset.ConclusionsThis study is the first systematic network and pathway analysis of candidate genes in MDD, providing abundant important information about gene interaction and regulation in a major psychiatric disease. The results suggest potential functional components underlying the molecular mechanisms of MDD and, thus, facilitate generation of novel hypotheses in this disease. The systems biology based strategy in this study can be applied to many other complex diseases.

Highlights

  • Numerous genetic and genomic datasets related to complex diseases have been made available during the last decade

  • Similar to the measurement of degree, there was no significant difference in the betweenness values between the major depressive disorder (MDD) and schizophrenia candidate genes (P = 0.21), but cancer genes had significantly larger betweenness values than DEPgenes (P = 0.03). These results indicated that the candidate genes for the two major psychiatric disorders, MDD and schizophrenia, shared similar topological features in the human interactome, while both had substantially different features when compared to cancer genes

  • Pathway enrichment by Ingenuity Pathway Analysis We examined whether DEPgenes are enriched in canonical pathways by performing Fisher’s exact test in the IPA system

Read more

Summary

Introduction

Numerous genetic and genomic datasets related to complex diseases have been made available during the last decade. Rapid advances in high throughput technologies have helped investigators generate numerous genetic and genomic datasets, aiming to uncover disease causal genes and their actions in complex diseases. These datasets are often heterogeneous and multi-dimensional; it is difficult to find consistent genetic signals for the connection to the corresponding disease. A convergent analysis of multi-dimensional datasets to prioritize disease candidate genes is urgently needed Such an approach may overcome the limitation of each single data type and provide a systematic view of the evidence at the genomic, transcriptomic, proteomic, metabolomic, and regulatory levels [5,6]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.