Abstract
Electroslag remelting (ESR) is widely used for the production of high-value-added alloys such as special steels or nickel-based superalloys. Because of high trial costs and the complexity of the mechanisms involved, trial-and-error-based approaches are not well suited for fundamental studies or for optimization of the process. Consequently, a transient-state numerical model has been developed that accounts for electromagnetic phenomena and coupled heat and momentum transfers in an axisymmetrical geometry. The model simulates the continuous growth of the electroslag-remelted ingot through a mesh-splitting method. In addition, solidification of the metal is modeled by an enthalpy-based technique. A turbulence model is implemented to compute the motion of liquid phases (slag and metal), while the mushy zone is described as a porous medium the permeability of which varies with the liquid fraction, thus enabling accurate calculation of solid/liquid interaction. The coupled partial differential equations (PDEs) are solved using a finite-volume technique. The computed results are compared to the experimental observation of an industrial remelted ingot; the melt pool depth and shape, in particular, are investigated, in order to validate the model. These results provide valuable information about the process performance and the influence of the operating parameters. In this way, we present an example of a model used as a support in analyzing the influence of the electrode fill ratio.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.