Abstract

A comprehensive computational model of wear has been developed. It simulates the wearing of a surface due to both scratching with a rigid indenter or normal/oblique impact of a rigid projectile. A group of spheres models the surface, characterised by the hardness. When the pressure overcomes a threshold, spheres are displaced to account for the change in surface profile. In the case of impact, the wear volume grows with the velocity and reaches a maximum between 0 and 90 ∘ . In the case of scratching, the dependence of the worn volume on the normal load is linear in a limited range of loads (Archard’s law) and transitions to a non-linear behaviour with the increase of load. Energy dissipation is naturally included in the model without additional parameters. This conceptually simple approach can easily be extended to model a variety of industrial applications and potentially predict wear patterns under varying scenarios. • A unified wear model has been developed for both impact and scratching scenarios. • An abradable surface is discretised using small spheres in DEM. • The change in surface profile due to wear is captured by displacing the spheres. • Simulations show a qualitative agreement with literature data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call