Abstract

A comprehensive model for nitrous oxide (N2O) emissions in an anaerobic/oxygen-limited aerobic (A/OLA) process is proposed here. This paper includes the following main innovations: (i) adding the phosphorus-accumulating organism (XPAO) denitrification pathway to the contribution of N2O emissions; (ii) considering the biological removal of organic matter and phosphorus and predicting the effect of influent phosphorus concentration on N2O emissions via an increase in the influent phosphorus concentration; and (iii) determining the effect of XPAO on N2O production in a simultaneous nitrification, denitrification and phosphorus removal (SNDPR) system by sensitivity analysis. The results suggested that the simulated data matched the measured data well. The predominant pathways of N2O emissions in the process of A/OLA were the ammonium-oxidizing bacterium (XAOB) denitrification pathway and the heterotrophic bacterium (XH) denitrification pathway, while the incomplete hydroxylamine (NH2OH) oxidation pathway and the XPAO denitrification pathway contributed less to N2O emissions. The metabolic activity of XPAO had a significant effect on N2O emissions, and increasing the influent phosphorus concentration was beneficial for reducing the release of N2O. This study is expected to provide a meaningful reference for reducing N2O emissions in wastewater treatment engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.