Abstract

The aim of this study was to use a new approach to investigate aeolian particle granulometry and micromorphology. Taking total aeolian deposition into account, we used parameters such as, particle area, perimeter, shape analysis for particle roughness (area/perimeter) and elongation (long/short axis). These parameters were analyzed on temporal and spatial scales at four study sites in the eastern Negev Desert, Israel. The total collection of particles was sorted into three size groups based on particle area to facilitate comparison. The classic definition of particle size (equating particle length with particle diameter) produced relatively small variations among the three size classes (25-38.6%). Our proposed comprehensive method demonstrated significant variation among the three size classes (13.9-60.8%), e.g. the classic method placed 36.4% of the particles in size class two while the new method placed 60.8% of the particles in this size class; the differences were even more significant regarding size class 3 (38.6% vs. 13.9%, respectively). The classic method did not facilitate investigation of particle roughness and elongation. With this new approach, it was possible to clearly define the particles by size class, based on these characteristics. With roughness, the variation among size classes 2 and 3 was about 27%. With elongation, the variation among size classes two and three was about 21%. Applying similar investigation method to study the aeolian particle granulometry and micromorphology can better facilitate more detailed calculation of particle size distribution, roughness and elongation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.