Abstract

This article reports on an investigation of a comprehensive mathematical model for biomass combustion within the one-dimensional model framework. The model takes into account different thermochemical processes, e.g., moisture evaporation, pyrolysis, heterogeneous char reactions, intra-particle heat and mass transfer, and changes in thermo-physical properties. Different approaches to model the various processes involved in the thermochemical conversion of biomass are discussed, and a sensitivity study is carried out to investigate the performance of sub-models for the drying process. The comprehensive model is used to investigate the effect of moisture diffusion and vapor condensation inside the particle pores. The model is evaluated under different conditions, and satisfactory comparison of the model results with experimental data and model results from other researchers is observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.