Abstract
Abstract In this study a comprehensive mathematical model of high pressure tubular ethylene polymerization reactors is presented. A fairly general reaction mechanism is employed to describe the complex kinetics of ethylene polymerization. To determine the variation of molecular properties along the reactor length the method of moments is applied to the infinite set of species balance equations to transform it into a low order system of differential equations in terms of the leading moments of the number chain length distribution. Detailed algebraic equations are given describing the variation of kinetic rate constants, thermodynamic and transport properties of the reaction mixture with temperature, pressure and composition. A new correlation is derived to describe the change of reaction viscosity with reactor operating conditions. The model permits a realistic calculation of temperature and pressure profiles, monomer and initiator concentrations, molecular properties of LDPE (i.e. Mn, Mm, LCB and SCB) as ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.