Abstract

The effect of iron-dosing in the sewer system, on wastewater treatment processes, was investigated using laboratory-scale wastewater systems comprising sewers, wastewater treatment reactors, sludge thickeners, and anaerobic sludge digesters. Two systems, fed with real domestic wastewater, were operated for over a year. The experimental system received ferric chloride (FeCl3) dosing at 10 mgFe L−1 in the sewer reactor whereas the control system received none. Wastewater, sludge and biogas were extensively sampled, and analysed for relevant parameters. The FeCl3-dosed experimental system displayed a decreased sulfide concentration (by 4.3 ± 0.5 mgS L−1) in sewer effluent, decreased phosphate concentration (by 4.7 ± 0.5 mgP L−1) in biological treatment reactor effluent, and decreased hydrogen sulfide concentration in biogas (911.5 ± 189.9 ppm to 130.0 ± 5.9 ppm), as compared with the control system. The biological nitrogen removal performance of the treatment reactor, and biogas production in the anaerobic digester were not affected by FeCl3-dosing. Furthermore, the dewaterability of the anaerobically digested sludge was enhanced by 17.7 ± 1.0%. These findings demonstrate that iron-dosing to sewers can achieve multiple benefits including sulfide removal in sewers, phosphorus removal during wastewater treatment, and hydrogen sulfide (H2S) removal during biogas generation. Therefore, an integrated approach should be taken when considering iron salts usage in an urban wastewater system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.