Abstract

A comprehensive model was developed to describe the kinetics of the laccase-catalyzed oxidation of phenol that incorporates enzyme kinetics, enzyme inactivation, variable reaction stoichiometry between substrate and oxygen, and oxygen mass-transfer. The model was calibrated and validated against data obtained from experiments conducted in an open system, which allowed oxygen to transfer from air to the reacting mixture and phenol conversion to approach completion. Inactivation of laccase was observed over the course of the reaction and was found to be dependent on the rate of substrate transformation. A single kinetic expression was sufficient to describe laccase inactivation arising from interaction with reacting species over time. Excellent agreement was found between model predictions of phenol and oxygen concentrations and experimental data over time for a wide range of initial substrate concentrations and enzyme activities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.