Abstract

Lipoxygenase (LOX) has the harmful effect of accelerating lipid oxidation, and polyphenols have the inhibitory effect on lipoxygenase. However, there were rare researches investigated on the interactions between polyphenols and LOX. In this study, the binding mechanisms between polyphenols (Jaceosidin-JSD and baicalein-BCL) and LOX were investigated by multi-spectroscopic analysis and computational study. Both JSD and BCL binding to LOX resulted in static fluorescence quenching, and the complexes of JSD-LOX and BCL-LOX were built at a molar ratio of 1:1, respectively. The binding constants of LOX-JSD (72.18 × 105 L/mol at 298 K) and LOX-BCL (12.43 × 105 L/mol at 298 K) indicated that LOX had stronger binding affinity to JSD compared to BCL. Compared with BCL-LOX, the JSD-LOX system formed more hydrogen bonds which ensured a stronger bond between JSD and LOX. The studies in molecular dynamics also demonstrated that the JSD-LOX complex is more stable, and the addition of JSD is more conducive to the complex formation. The current study provides some new insights for the study on the inhibition of lipid oxidation and affords a new strategy for the discovery of novel food preservatives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.