Abstract

Tool failure and chatter are two major problems during machining. To detect and distinguish the occurrences of these two abnormal conditions, a novel parallel multi-ART2 neural network has been developed. An advantage of this network is more reliable identification of a variety of complex patterns. This is due to the sharing of multi-input feature information by its multiple ART2 subnetworks which allow for finer vigilance thresholds. Using the maximum frequency-band coherence function of two acceleration signals and the relative weighted frequency-band power ratio of an acoustic emission signal as input feature information, the network has been found to identify various tool failure and chatter states in turning operations with a total of 96.4% success rate over a wide range of cutting conditions, compared to that of 80.4% obtainable with the single-ART2 neural network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.