Abstract
Enhancement of ammonia reactivity is crucial for potential applications of ammonia as an engine and gas turbine fuel. A common strategy for improving ammonia's poor reactivity is blending it with more reactive fuels like hydrogen and methane. However, fundamental studies of ammonia combustion with higher hydrocarbons and key intermediate oxidation species of higher alkanes such as propene do not exist. Thus, this work presents an effort to study the laminar flame propagation of ammonia blended with propene. Laminar burning velocity (SL) of NH3/C3H6/air mixtures was measured at 298 K, pressures up to 5 bar, equivalence ratios of 0.7 to 1.3, and various propene to ammonia ratios (i.e.,% propene to ammonia mole fraction, xC3H6 = 10 to 50) in a high-pressure spherical propagating flame vessel. A kinetic model was developed based on our previous work to characterize the combustion behavior of NH3/C3H6/air mixture. The model reasonably agrees with the experimental data and follows the observed trends very well. The results showed that blending NH3 with C3H6 positively enhanced SL of NH3 by promoting the formation of key radicals e.g., O, OH, and H. Relative to a neat ammonia/air mixture, co-firing ammonia with propene leads to a reduced pressure dependence of the laminar burning velocity. However, the reaction H + O2(+M)=HO2(+M) leads to strong pressure dependency of lean NH3/C3H6 mixtures compared to rich mixtures. The model reveals that besides fuel-NO coming from NH3, prompt NO also actively contributes to NO formation. It is seen that N2O formation is significantly suppressed with increasing pressure or increasing C3H6 content in the fuel blend. In contrast to NO and N2O, NO2 concentration increases slightly with an increase in pressure. The reported experimental data and model will be useful in understanding the interaction between NH3 and alkenes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.