Abstract

To effectively evaluate and select trees in coastal areas for protection against typhoons, 16 traits from three categories including 1) growth and properties of 2) roots and of 3) wood types were chosen to establish a comprehensive evaluation system using the analytic hierarchy process (AHP). Then 10 trees (Casuarina equisetifolia W8, Casuarina equisetifolia K18, Casuarina equisetifolia P6, Casuarina equisetifolia G1, Casuarina equisetifolia A8, Calophyllum inophyllum, Melia azedarach, Eucalyptus grandis Eucalyptus urophylla, Acacia mangium, and Acacia crassicarpa) were selected and evaluated using the comprehensive evaluation system. Results of tree performance in resisting typhoons showed that wood property was the key factor with a weight of 0.633 3, growth was second, and root traits had a minimal influence (weight of 0.106 2). Wood property traits of 1) wood density and 2) ratio of fiber length to width had the greatest influence on anti-typhoon performance. For growth traits, the ratio of aboveground to belowground fresh weight had the largest contribution, and for root traits, root depth had the largest weight. The comprehensive evaluation system ranked the 10 trees as: Casuarina equisetifolia W8 > Casuarina equisetifolia K18 > Casuarina equisetifolia P6 > Casuarina equisetifolia G1 > Casuarina equisetifolia A8 > Calophyllum inophyllum > Melia azedarach > Eucalyptus grandis Eucalyptus urophylla > Acacia mangium > Acacia crassicarpa. Evaluation results were consistent with typhoon damage investigations, so this comprehensive evaluation system could provide an important reference when selecting and evaluating trees for anti-typhoon performance. [Ch, 7 tab. 25 ref.]

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call