Abstract

An important requirement to control the inspection of software artifacts is to be able to decide, based on more objective information, whether the inspection can stop or whether it should continue to achieve a suitable level of artifact quality. A prediction of the number of remaining defects in an inspected artifact can be used for decision making. Several studies in software engineering have considered capture-recapture models to make a prediction. However, few studies compare the actual number of remaining defects to the one predicted by a capture-recapture model on real software engineering artifacts. The authors focus on traditional inspections and estimate, based on actual inspections data, the degree of accuracy of relevant state-of-the-art capture-recapture models for which statistical estimators exist. In order to assess their robustness, we look at the impact of the number of inspectors and the number of actual defects on the estimators' accuracy based on actual inspection data. Our results show that models are strongly affected by the number of inspectors, and therefore one must consider this factor before using capture-recapture models. When the number of inspectors is too small, no model is sufficiently accurate and underestimation may be substantial. In addition, some models perform better than others in a large number of conditions and plausible reasons are discussed. Based on our analyses, we recommend using a model taking into account that defects have different probabilities of being detected and the corresponding Jackknife Estimator. Furthermore, we calibrate the prediction models based on their relative error, as previously computed on other inspections. We identified theoretical limitations to this approach which were then confirmed by the data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.