Abstract

In this paper, we present the results from an empirical power comparison of 40 goodness-of-fit tests for the univariate Laplace distribution, carried out using Monte Carlo simulations with sample sizes n = 20, 50, 100, 200, significance levels , and 400 alternatives consisting of asymmetric and symmetric light/heavy-tailed distributions taken as special cases from 11 models. In addition to the unmatched scope of our study, an interesting contribution is the proposal of an innovative design for the selection of alternatives. The 400 alternatives consist of 20 specific cases of 20 submodels drawn from the main 11 models. For each submodel, the 20 specific cases corresponded to parameter values chosen to cover the full power range. An analysis of the results leads to a recommendation of the best tests for five different groupings of the alternative distributions. A real-data example is also presented, where an appropriate test for the goodness-of-fit of the univariate Laplace distribution is applied to weekly log-returns of Amazon stock over a recent 4-year period.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.