Abstract

Nitrogen (N) is an important nutrient and signal for plant growth and development. However, to date, our knowledge of how plants sense and transduce the N signals is very limited. To better understand the molecular mechanisms of plant N responses, we took two-dimensional gel-based proteomic and phosphoproteomic approaches to profile the proteins with abundance and phosphorylation state changes during nitrate deprivation and recovery in the model plant Arabidopsis thaliana. After 7-day-old seedlings were N-deprived for up to 48 h followed by 24 h recovery, a total of 170 and 38 proteins were identified with significant changes in abundance and phosphorylation state, respectively. Bioinformatic analyses implicate these proteins in diverse cellular processes including N and protein metabolisms, photosynthesis, cytoskeleton, redox homeostasis, and signal transduction. Functional studies of the selected nitrate-responsive proteins indicate that the proteasome regulatory subunit RPT5a and the cytoskeleton protein Tubulin alpha-6 (TUA6) play important roles in plant nitrate responses by regulating plant N use efficiency (NUE) and low nitrate-induced anthocyanin biosynthesis, respectively. In conclusion, our study provides novel insights into plant responses to nitrate at the proteome level, which are expected to be highly useful for dissecting the N response pathways in higher plants and for improving plant NUE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call