Abstract

Abstract In this study, an ideal planar perovskite solar cell (PSC) has been proposed and simulated by using Tungsten Disulfide (WS2) as an electron transport layer (ETL). Effects of various amphoteric defect states of PSC based on CH3NH3PbI3−xXx absorber layer and the interface properties of both ETL and hole transport layer (HTL) are quantitatively analysed by SCAPS-1D numerical simulator. Results show that the device performance is highly influenced by amphoteric defects in the absorber layer rather than the interface defects layer (IDL). It is also revealed that the quantitative tolerable range in CH3NH3PbI3−xXx and IDLs are less than 1015 cm−3 and 1016 cm−3, respectively. The PSC exhibits better performance in the range of 10 °C–40 °C and degrades gradually at higher temperature. With the proposed structure, the simulation finds the highest power conversion efficiency (PCE) of PSC to be 25.70% (Voc = 1.056 V, Jsc = 25.483 mA/cm2, and FF = 88.54%).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.