Abstract

Nuclear genetic alterations have been widely investigated in papillary thyroid cancer (PTC), however, the characteristics of the mitochondrial genome remain uncertain. We sequenced the entire mitochondrial genome of 66 PTCs, 16 normal thyroid tissues and 376 blood samples of healthy individuals. There were 2508 variations (543 sites) detected in PTCs, among which 33 variations were novel. Nearly half of the PTCs (31/66) had heteroplasmic variations. Among the 31 PTCs, 28 specimens harbored a total of 52 somatic mutations distributed in 44 sites. Thirty-three variations including seven nonsense, 11 frameshift and 15 non-synonymous variations selected by bioinformatic software were regarded as pathogenic. These 33 pathogenic mutations were associated with older age (p = 0.0176) and advanced tumor stage (p = 0.0218). In addition, they tended to be novel (p = 0.0003), heteroplasmic (p = 0.0343) and somatic (p = 0.0018). The mtDNA copy number increased in more than two-third (46/66) of PTCs, and the average content in tumors was nearly four times higher than that in adjacent normal tissues (p < 0.0001). Three sub-haplogroups of N (A4, B4a and B4g) and eight single-nucleotide polymorphisms (mtSNPs) (A16164G, C16266T, G5460A, T6680C, G9123A, A14587G, T16362C, and G709A) were associated with the occurrence of PTC. Here we report a comprehensive characterization of the mitochondrial genome and demonstrate its significance in pathogenesis and progression of PTC. This can help to clarify the molecular mechanisms underlying PTC and offer potential biomarkers or therapeutic targets for future clinical practice.

Highlights

  • Mitochondria are semiautonomous organelles responsible for bioenergetic metabolism, aging and apoptosis [1]

  • A total of 2508 variations in 543 sites were identified in 66 papillary thyroid cancer (PTC) cases, and the D-loop region was the hotspot of Mitochondrial DNA (mtDNA) (Figure S1a,b)

  • We identified a novel frameshift alteration 14495–14502 del (AAAT) in the ND6 gene, which directly resulted in a premature stop-codon (UAG) being introduced and truncated the polypeptide from 175 amino-acid to 58 amino-acid

Read more

Summary

Introduction

Mitochondria are semiautonomous organelles responsible for bioenergetic metabolism, aging and apoptosis [1]. Otto Warburg et al first proposed that metabolic reprogramming occurred in cancer cells evidenced by highly activated glycolysis even in the presence of oxygen, and this was regarded as a hallmark of cancer [2]. This phenomenon, called the Warburg effect, is probably triggered by insufficient energy supply that is the result of the combination of mitochondrial defects and activated cellular proliferation [3]. Pathogenic mtDNA mutations can severely affect mitochondrial respiration and overproduce endogenous reactive oxygen species (ROS) contributing to anti-apoptosis, proliferation and metastasis of cancer [5,6]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.