Abstract

ABSTRACTThe performance of the extended multi-state (XMS)-complete active space second-order perturbation theory (CASPT2) method has been assessed for the benchmark of a truncated retinal model, the penta-2,4-dieniminium cation (PSB3). This benchmark presents a challenge for multireference electronic structure methods because the wave function character is changing considerably. The assessment comprises ground and excited state pathways of the isomerisation, including transition states and conical intersection (CI) points. It also includes circular paths centred around different CIs, and 2D potential energy scans located in the branching planes. In this work, we compare the performance of the previous formulations of CASPT2, the single-state and the multi-state, with the recently developed XMS-CASPT2. Besides, we have also tested two variants of internal contraction in XMS-CASPT2, namely, the single-state single reference (SS-SR) and multi-state multireference (MS-MR) schemes. In our study, we find that XMS-CASPT2 corrects the artefacts and discontinuities present in other CASPT2 variants. The investigation of a circular loop and 2D potential energy surfaces around the surface crossing point shows that XMS-CASPT2 exhibits a smooth topology at the CI with the correct degeneracy. It also agrees better with the reference method MRCISD+Q in regions of the potential energy surfaces further away from CIs. Another observation is the close agreement between the results from the SS-SR contraction scheme and the more demanding MS-MR scheme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call