Abstract
Despite numerous technological applications associated to nickel silicide thin films, their formation mechanisms are still far from being understood. We combined experimental and numerical approaches to unravel the early stages of nickel silicide formation with an atomistic precision. In particular, we employed first principles calculations, X-ray reflectivity as well as high-resolution scanning transmission electron microscopy analyses. Altogether, our work demonstrates that during nickel deposition on top of a silicon surface, an interface alloyed layer is formed even at room temperature before any thermal activation. Moreover, we managed to determine that this interfacial layer has a nickel-rich Ni3Si composition which is favored by the ability of nickel atoms to penetrate the surface layers of the silicon substrate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.