Abstract

Wide field planetary camera 2 (WFPC2) exposures are already some 20 years older than Gaia epoch observations, or future James Webb Space Telescope observations. As such, they offer an unprecedented time baseline for high-precision proper-motion studies, provided the full astrometric potential of these exposures is reached. We have started such a project with the work presented here being its first step. We explore geometric distortions beyond the well-known ones published in the early 2000 s. This task is accomplished by using the entire database of WFPC2 exposures in filters F555W, F606W and F814W and three standard astrometric catalogs: Gaia EDR3, 47 Tuc and ωCen. The latter two were constructed using Hubble Space Telescope observations made with cameras other than WFPC2. We explore a suite of centering algorithms, and various distortion maps in order to understand and quantify their performance. We find no high-frequency systematics beyond the 34th-row correction, down to a resolution of 10 pixels. Low-frequency systematics starting at a resolution of 50 pixels are present at a level of 30–50 millipix (1.4–2.3 mas) for the PC and 20–30 millipix (2–3 mas) for the WF chips. We characterize these low-frequency systematics by providing correction maps and updated cubic-distortion coefficients for each filter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call