Abstract
BackgroundAutomated computerized electrocardiogram (ECG) interpretation algorithms are designed to enhance physician ECG interpretation, minimize medical error, and expedite clinical workflow. However, the performance of current computer algorithms is notoriously inconsistent. We aimed to develop and validate an artificial intelligence–enabled ECG (AI-ECG) algorithm capable of comprehensive 12-lead ECG interpretation with accuracy comparable to practicing cardiologists.MethodsWe developed an AI-ECG algorithm using a convolutional neural network as a multilabel classifier capable of assessing 66 discrete, structured diagnostic ECG codes using the cardiologist’s final annotation as the gold-standard interpretation. We included 2,499,522 ECGs from 720,978 patients ≥18 years of age with a standard 12-lead ECG obtained at the Mayo Clinic ECG laboratory between 1993 and 2017. The total sample was randomly divided into training (n = 1,749,654), validation (n = 249,951), and testing (n = 499,917) datasets with a similar distribution of codes. We compared the AI-ECG algorithm’s performance to the cardiologist’s interpretation in the testing dataset using receiver operating characteristic (ROC) and precision recall (PR) curves.ResultsThe model performed well for various rhythm, conduction, ischemia, waveform morphology, and secondary diagnoses codes with an area under the ROC curve of ≥0.98 for 62 of the 66 codes. PR metrics were used to assess model performance accounting for category imbalance and demonstrated a sensitivity ≥95% for all codes.ConclusionsAn AI-ECG algorithm demonstrates high diagnostic performance in comparison to reference cardiologist interpretation of a standard 12-lead ECG. The use of AI-ECG reading tools may permit scalability as ECG acquisition becomes more ubiquitous.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.