Abstract
A detailed reaction mechanism for n-heptane oxidation has been compiled and subsequently simplified. The model is based on a kinetic model for C1-C4 fuel oxidation of Hoyermann et al. [Phys. Chem. Chem. Phys., 2004, 6, 3824] and a detailed mechanism for n-heptane oxidation developed by Curran et al. [Combust. Flame, 1998, 114, 149]. The generated mechanism is kept compact by limiting the application of the low temperature oxidation pathways to the fuel molecule. The first reaction steps and the complex low temperature paths in the oxidation process have been simplified and reorganized by linear chemical lumping. The reported procedure allows a decrease in number of species and reactions with only a minor loss of model accuracy. The simplified model is of very compact size and gives an advantageous starting point for further model reduction. By this chemically lumped general mechanism without further adjustments the large set of experimental data for the high and low temperature oxidation (ignition delay times, species concentration profiles, heat release and engine pressure profiles, flame speeds and flame structure data) for conditions ranging from very low to high temperatures (550-2300 K), very lean to extremely fuel rich (0.22 < phi < 3) mixtures and pressures between 1 and 42 bar is consistently described providing a basis for reliable predictions for future applications, (i) building reaction mechanisms for similar but chemically more complex fuels (e.g. iso-octane, n-decane,...) and (ii) calculating complex flow fields ("fluid dynamics") after further simplification with advanced reduction tools.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.