Abstract

Autism Spectrum Disorder (ASD) is a neurodevelopmental condition that presents challenges in communication, social interaction, repetitive behaviour, and limited interests. Detecting ASD at an early stage is crucial for timely interventions and an improved quality of life. In recent times, Artificial Intelligence (AI) has been increasingly used in ASD research. The rise in ASD diagnoses is due to the growing number of ASD cases and the recognition of the importance of early detection, which leads to better symptom management. This study explores the potential of AI in identifying early indicators of autism, aligning with the United Nations Sustainable Development Goals (SDGs) of Good Health and Well-being (Goal 3) and Peace, Justice, and Strong Institutions (Goal 16). The paper aims to provide a comprehensive overview of the current state-of-the-art AI-based autism classification by reviewing recent publications from the last decade. It covers various modalities such as Eye gaze, Facial Expression, Motor skill, MRI/fMRI, and EEG, and multi-modal approaches primarily grouped into behavioural and biological markers. The paper presents a timeline spanning from the history of ASD to recent developments in the field of AI. Additionally, the paper provides a category-wise detailed analysis of the AI-based application in ASD with a diagrammatic summarization to convey a holistic summary of different modalities. It also reports on the successes and challenges of applying AI for ASD detection while providing publicly available datasets. The paper paves the way for future scope and directions, providing a complete and systematic overview for researchers in the field of ASD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call