Abstract
The universal genetic code is comprised of 61 sense codons, which are assigned to 20 canonical amino acids. However, the evolutionary basis for the highly conserved mapping between amino acids and their codons remains incompletely understood. A possible selective pressure of evolution would be minimization of deleterious effects caused by misdecoding. Here we comprehensively analyzed the misdecoding pattern of 61 codons against 19 noncognate amino acids where an arbitrary amino acid was omitted, and revealed the following two rules. (i) If the second codon base is U or C, misdecoding is frequently induced by mismatches at the first and/or third base, where any mismatches are widely tolerated; whereas misdecoding with the second-base mismatch is promoted by only U-G or C-A pair formation. (ii) If the second codon base is A or G, misdecoding is promoted by only G-U or U-G pair formation at the first or second position. In addition, evaluation of functional/structural diversities of amino acids revealed that less diverse amino acid sets are assigned at codons that induce more frequent misdecoding, and vice versa, so as to minimize deleterious effects of misdecoding in the modern genetic code.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.