Abstract

Solar Absorber Coatings (SACs) are widely used materials for improving thermal efficiencies of solar receivers. Traditionally, these SACs are investigated using heat treatments to test their optical-thermal properties; however, tests under concentrated flux conditions are still required. In this work, the thermal efficiency of different SACs is experimentally evaluated and compared. The analyzed SACs are: (1) Pyromark®2500, (2) Solkote®, (3) Thurmalox®250, (4) Comex® and (5) a new Soot from Forest Biomass (SFB) based coating. To assess the SACs performance, a High Flux Solar Simulator along with a calorimetric test bench are implemented under a well-controlled indoor environment applying two levels of concentrated irradiance of 100 ± 3 kW/m2 and 415 ± 12 kW/m2 named low and high flux level, respectively. Results show that, for a low flux level, the analyzed coatings present thermal efficiencies in a range from 91.74% to 83.24%, exhibiting a slightly close performance in most of the cases. Correspondingly, for a high flux level, the efficiencies range from 88.69% to 72.69%, with Pyromark®2500 being the most efficient in both cases. In addition, variations in the optical properties are reported for the experimental campaign with the high flux level, observing slight changes in the spectral absorptance and emittance. From these results, Pyromark presents the highest drop in solar absorptance of 1.22%, which is attributed to microcracks observed through the Scanning Electron Microscope (SEM). Thus, the presented approach can provide valuable information about the effects that concentrated flux levels can have in the optical-thermal performance of the analyzed samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.